Structural studies of the binding of the anti-ulcer drug sucrose octasulfate to acidic fibroblast growth factor.

نویسندگان

  • X Zhu
  • B T Hsu
  • D C Rees
چکیده

BACKGROUND The anti-ulcer drug sucrose octasulfate (SOS) binds to fibroblast growth factors (FGFs), proteins which stimulate the growth and differentiation of several cell types, including stomach epithelial cells. It is believed that SOS stabilizes FGFs against acid denaturation in the stomach, thus enhancing their ability to stimulate healing of ulcerated tissue. SOS binds to the same site on FGF as heparin and other proteoglycans; in vivo, FGF must bind to cell-surface proteoglycans or to heparin before it can interact with FGF receptors and stimulate growth. The details of this process are not understood. RESULTS We report the crystal structure of a 1:1 complex between acidic FGF (aFGF) and SOS at 2.7 A resolution. SOS binds to a positively charged region of aFGF, largely composed of residues 112-127, and makes contacts primarily with Lys112, Arg116, Lys118, and Arg122. This region is also important in binding heparin. The overall conformation of aFGF is not changed by binding SOS, although the positions of some side chains in the binding site shift by as much as 6 A. CONCLUSION The SOS-FGF crystal structure is consistent with the model that SOS stabilizes FGF by neutralizing several positively charged residues that would destabilize the native structure by electrostatic repulsion. On the basis of this structure, we provide a model for the complex of heparin with an FGF dimer. Such interactions may facilitate FGF receptor dimerization, which may be important in receptor signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for activation of fibroblast growth factor signaling by sucrose octasulfate.

Sucrose octasulfate (SOS) is believed to stimulate fibroblast growth factor (FGF) signaling by binding and stabilizing FGFs. In this report, we show that SOS induces FGF-dependent dimerization of FGF receptors (FGFRs). The crystal structure of the dimeric FGF2-FGFR1-SOS complex at 2.6-A resolution reveals a symmetric assemblage of two 1:1:1 FGF2-FGFR1-SOS ternary complexes. Within each ternary ...

متن کامل

15N NMR relaxation studies of free and ligand-bound human acidic fibroblast growth factor.

15N NMR relaxation data have been used to characterize the backbone dynamics of the human acidic fibroblast growth factor (hFGF-1) in its free and sucrose octasulfate (SOS)-bound states. (15)N longitudinal (R(1)), transverse (R(2)) relaxation rates and (1H)-(15)N steady-state nuclear Overhauser effects were obtained at 500 and 600 MHz (at 25 degrees C) for all resolved backbone amide groups usi...

متن کامل

N NMR Relaxation Studies of Free and Ligand-bound Human Acidic Fibroblast Growth Factor*

N NMR relaxation data have been used to characterize the backbone dynamics of the human acidic fibroblast growth factor (hFGF-1) in its free and sucrose octasulfate (SOS)-bound states. N longitudinal (R1), transverse (R2) relaxation rates and { H}-N steadystate nuclear Overhauser effects were obtained at 500 and 600 MHz (at 25 °C) for all resolved backbone amide groups using Hdetected two-dimen...

متن کامل

Circulating basic fibroblast growth factor in serum of gastric ulcers patient as a biomarker of wound severity

Background: Basic fibroblast growth factor (bFGF) is a glycoprotein with stimulating ability of angiogenesis. In addition, bFGF plays an important role in wound healing process in some tissues for example gastrointestinal tract, but its ability for discrimination of various stages of wound severity in these diseases was not reported. Therefore, we aimed to determine the bFGF levels in gastric u...

متن کامل

Vascular regeneration by local growth factor release is self-limited by microvascular clearance.

BACKGROUND The challenge of angiogenesis science is that stable sustained vascular regeneration in humans has not been realized despite promising preclinical findings. We hypothesized that angiogenic therapies powerfully self-regulate by dynamically altering tissue characteristics. Induced neocapillaries increase drug clearance and limit tissue retention and subsequent angiogenesis even in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 1993